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refined version of a recently-introduced methodology for formulating excitation-adaptive
wave equation FDTD (WE-FDTD) schemes, described below. This concept is the basis for a
unified classification for both existing and new schemes. Both one- and two-dimensional
cases are presented for boundless, source free, homogeneous, isotropic and lossless media.
The 1-D and 2-D cases are developed in detail for the (3,2M + 1) (temporal, spatial) and
(3,3) 2-D stencils, respectively. Stability analysis is built into the methodology in terms
of either analytical conditions or “stability maps” defined herein. The methodology is seen
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Maxwell’s equations as a generalization of many existing schemes that also provides a unified tool for a system-
Nonstandard FDTD atical design of WE-FDTD schemes subject to specific requirements in terms of the spectral
Dispersion relation preserving schemes content of the excitation. The computational efficiency for all schemes remains the same
Higher order schemes for a given stencil, since the core of the FDTD code is unchanged between schemes, the dif-

ference being only in the values of scheme coefficients.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

An inherent error source in the finite difference time domain (FDTD) method [1,2] is the existence of numerical dispersion
manifested by a numerical non-linear relationship fc(w). Remedies to dispersion errors were originally suggested in the form
of dispersion relation preserving (DRP) schemes, introduced in [3] and continued in [4]. Other error reducing methods have
included finer sampling rates, higher order schemes [5-13], and non-standard FDTD (NSFDTD) schemes [14-19]. Compari-
son between multiresolution and higher order for dispersion reduction schemes are presented in [20]. Minimization and
optimization of predefined scheme properties (e.g. broadband dispersion error, anisotropy) methods have been developed,
e.g. in [21-40].

A comprehensive methodology for the formulation of wave equation FDTD (WE-FDTD) schemes with controlled order of
accuracy and dispersion has been recently introduced in [38-40]. The methodology is refined in this work by fusing both the
order of accuracy (OoA) and numerical dispersion into the single concept of the spectral order of accuracy (SOoA). The SOoA
is defined in the context of the general dispersion equation (GDE), i.e. the spectral transform of the discretized wave with
undetermined coefficients [38,39]. In the process of reducing errors, one tries to fit the GDE to the linear dispersion surface,
or, in the one-dimensional case, to the curve K = Q/7, where Q = wAt and K = kAx and k is the numerical wavenumber. Such
a fit can be realized at the origin (Q,K) = (0,0), in which case it is seen as an optimization of the OoA only. For a one-dimen-
sional stencil with three temporal and 2M + 1 spatial samples (denoted herein as a (3,2M + 1) stencil), all schemes with OoAs
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ranging from (2,2M) to (2M,2M) are derived from a Taylor expansion of the GDE about the origin. However, the spectral do-
main representation makes it possible to fit the curves or surfaces at other frequency points to a certain order, denoted the
SoOA. This general definition of the SO0A enables the optimization of the schemes about any range of finite frequencies Q.
The conventional OoA can then be traded for higher accuracy in terms of the phase or group velocities or higher order deriv-

-\ —1
atives <(5’w’<) > at Q. Note that the conventional OoA is directly related to the special case of the SO0A, defined about the

origin of the dispersion surface. Using the SO0A, it becomes possible to design schemes tailored to a given excitation spec-
trum in order to reduce the overall error. Note also, that while the OoA determines the rate by which the difference equation
converges to the PDE when At = 0 and Ax,y = 0, for a general €, convergence is achieved (e.g. for the one-dimensional
case) when At — Aty, Ax — Axg = Q — Qp = WAL, K — Ky = kgAX,.

The process of fitting the GDE to the linear dispersion relationship begins with the selection of a set of frequencies in
accordance with the spectral content of the exciting pulse and determination of the corresponding orders of accuracy by
which the GDE converges to the linear curve about these frequencies. These choices are then translated into adjustments
of certain coefficients within the scheme, as detailed in Section 2. The main FDTD code that follows this computation remains
unchanged for all schemes pertaining to the given stencil.

Several cases are studied in Section 3. The methodology is applied to 1-D, source free homogeneous, isotropic, lossless and
boundless wave equations, using stencils sizes of (3,3), (3,5) and (3,7) for explicit, central difference discretizations of the
wave equation. The entire process is carried out while assuring numerical stability by the use of the general amplification
polynomial (GAP).

An example of a wideband modulated pulse, propagated over a million time steps, with a (3,5) stencil is shown in Section
4, in comparison with the standard (4,4) scheme that uses the same stencil size and hence has the same computational com-
plexity. The notable differences are in the group delay and distortions due to numerical dispersion. The two-dimensional
case is initially developed in Section 5 with a suggestion for stencil classification and detailed development for the (3,3) sten-
cil. This methodology can be seen as a generalization of available 1-D and 2-D schemes, that also provides a tool for devising
new schemes tailored to the spectrum of the excitation. As seen in the examples, this process enables FDTD simulation over
long periods of time with little dispersion error effects. The computational burden remains the same for all schemes because
they only differ in the pre-calculations stage of the undetermined coefficients. Conclusions to this effect are drawn in Section
7.

2. Generation of one-dimensional schemes with specified spectral order of accuracy
2.1. Convergence rate of the wave equation in the spectral domain: the spectral order of accuracy (SO0A)

The equation to be discretized is the one-dimensional wave equation (WE) in a homogeneous, lossless, boundless and
source free medium:

(az _e g;) E(x,t) = 0. (1)

The conventional usage of a (3,3) stencil with the three point approximation of the second order derivatives in time and
space leads to the following approximation of (1):

EN' - 2E +EF' 9 (E], —2E +E ) =0, 7=CcAt/Ax. (2)

Eq. (2) can be generalized for temporal-spatial (3,2M + 1) stencils with symmetrical “molecules”, typical of central
differences:

M
E;H] + E?q + Zcm (E?+m + E?fm) =0. (3)
D —— m=0 %/_/
molecule molecule

Here, the molecule coefficients ¢, serve as degrees of freedom for formulating many schemes. The number of these degrees
of freedom is seen to be M + 1 as determined by the stencil size. Upon invoking discrete separation of variables (or using the
Z-transform) in (3), i.e.

E} = &(AX)T"(At) (4)

and using the spectral representation (¢,7) = (X, e/ ?) where Q = wAt,K = kAx (k being the numerical wave number), the
generalized dispersion equation (GDE) emerges

M
c0sQ+ Y " cmcosmK =0, (5)

m=0

whose cos(-) format is again typical of central differences. Eq. (5) is also the spatial-temporal spectral transform of (3). It is
our objective to generate a scheme whose GDE curve (5) approximates the linear curve
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—Q+7K=0 (6)

subject to given requirements. The rate by which (5) converges to (6) is defined as the new concept of the spectral order of
accuracy SOoA = (N, I), where N and I characterize the convergence rates in Q and K, respectively, as defined in Sections 2.2
and 2.3. One can define the SO0A about any arbitrary points (£,,K,) residing on the linear curve (6), including, but not lim-
ited to the case (£4,Kqy) = (0,0). The SO0A is defined per such point and is indexed accordingly as SOoA,. The higher the
SOo0A, the higher the order of the GDE derivatives that are matched to the linear ones. For example, SO0A = (1,1) at
(Qq,Kq) > (0,0) is equivalent to matching the GDE curve with the linear curve by zero-order derivative only. In physical
terms, this translates to the numerical phase velocity V, matching the linear one at (@4, K,). Similarly, SOoA = (2, 2) is equiv-
alent to matching both the GDE and its first derivative to those of the linear curve, or matching of both V, and the group
velocity Vg at (Q4,Kq) (for (£4,Kq) = (0,0), matching of V, only and of both V, and V, are characterized by
SO0A = (2,2) and (4, 4), respectively).

The conventional temporal/spatial OoA concept can be seen as a special case of the SO0A for (Q4,K,) = (0,0), because the
limits Ax — 0, At — 0 are synonymous with Q — 0, K — 0 (actually, the relationship is SOoA = OoA + 2).

In summary, the spectral domain methodology offers the benefit of unifying the standard and non-standard FDTD
schemes while consolidating the parameters of the conventional OoA and dispersion reduction techniques under the single
concept of the SO0A. In doing so, the framework for designing additional, tailor made schemes is revealed. Such schemes can
be made to accommodate the spectra of specific excitations, for both narrowband and wideband signals.

2.2. The case (24,Kq) = (0,0)
We wish to use (5) as an approximation to the linear dispersion relationship (6) about (2,4,K,) = (0,0). To this end, ex-

pand (5) as a two-dimensional Taylor series about (0,0), equating the series to zero term by term up to the SOoA = (N, I), as
follows:
M x (Z1)P % 1

i Z mK) 17

p=0 : p=0 2p)!

o=

- M
QP+ 0(Q") +co + Z Cnm? sz +0K") =0, (7)

=1

't!

where N and I are even numbers. Eq. (7) is compacted by defining ¢ = (¢, ¢, ...,cy) and v* = (1°2° ... M)

1
11

-1 )P
(2p)!

—

p
-0 (Q,K) + (c-vP)K* + 0(Q" +K') =0, (8)

Nz

p:
where
0% (2,K) = Q% + (c- vP)K?. (9)

Once the linear dispersion relationship (6) is substituted into the first summation in (8) and the series is truncated to
o(Q" +K') we have

N g
- (=1 (c-v*)
Cﬁ; (2p)! {H 7P }QZM

Equating each of the terms in (10) to zero leads finally to a system of equations for determining the c,s such that the trun-
cated Taylor expansion of the GDE approximates the linear dispersion relationship to the specified SOoA:

-1

M=

_1)\P
(=1 (c-vP)K* =0, N<I<2M+2. (10

|
2 (2p)

M

1+> =0, p=0, (11a)
(c-v?) B N

1+ = 0. p=1...5-1, (11b)
5 N I

¢v?=0 p=5...5-1 NSI<2M+2. (11c)

Eq. (11) serve as a design tool for new FDTD schemes given the (3,2M + 1) stencil size. In designing these schemes, one has
the freedom to choose the values of N and I almost arbitrarily. The choice of N determines the balance between equations of
the type (11b) and (11c). The case of (11c) annuls the K-terms only, while Eq. (11b), that include the substitution of the linear
dispersion relationship K = £ into the first summation in (8), annul both Q and K-terms simultaneously. Eq. (11b) are the
spectral domain equivalent of the temporal/spatial concept of “derivative swapping”. For this reason, each addition of an
equation of the type (11c) raises the value the order I only, whereas adding equations of the type (11b) raises the values
of both N and I simultaneously. The parameters thus obey the condition N < I < 2M + 2. The minimal Ny,;, = 2 is attained
when only equations of the type (11c) are used, and the maximal Nn.x = I is where all the equation are of the type (11b).
If I = Inax = 2M + 2 and N = I, then (10) is reduced to
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M

=1
Co +

Z (2p)
This special case coincides with Eq. (17) in [39]. Existing schemes, based on the conventional OoA, can be interpreted as cer-
tain choices of the value of N and I. For example, I can be set equal to Ih,x = 2M + 2, causing all degrees of freedom to be
dedicated to the maximization of the OoA. Cases with I < 2M + 2 allow tradeoffs where the OoA can be reduced in favor
of non-Taylor based conditions, e.g. for dispersion error reduction at non-zero frequencies, sometimes referred to as non-

standard schemes [32]. In the sequel, these methods, too, are consolidated into the more general framework based on the
SOo0A at a set of arbitrary frequencies.

T {1 n (c'y:;zp)} ¥ —0. (12)

2.3. The case (Q4,Kq) # (0,0)

We begin the development by generalizing the definitions of @ and v in (9) as follows:
62 (Qq,Kq) = €05 (2 — 29)” + (€ V¥ 5 Veos (Kg) ) (K — Ko)? (13a)
O (Qq,Kq) = sin Qq(Q — Q) + (€- v 5 vgin(Kg)) (K — Ko)™*, (13b)
Veos(Kq) = (cos Ky, cos 2Ky, . .., cos M1<q)T, (13¢)
Vin(Ky) = (sinK,,sin2K,, ..., sin MK,)", (13d)

where ¢ and v* have been defined above, z = X xy = (X1¥,X2Y5, - - ., XuY)) and the * symbol denotes the Hadamard product.
Incidentally, using these definitions, the GDE (5) may be re-stated as

Co + €OS O s — Sin Oy, = 0, (14)
where
C0S O = i -1y o (15a)
p zp) cos?
sin Oy, = i ﬂezf’“. (15b)
p (2p + 1) sin
The generalized counterpart of (8) is obtained by expanding (5) about (24, Kq):
N-1 -1
Co+ > My(0p @ + (1= 0p) @8 ) + > 1,€- VP 5 (0 Vios (Kg) + (1 = o) Viin(Ky)) (K — Kq)”
p=0 p=N
+ o[(Q — Q)"+ (K - 1<q)’] =0, (16)
where
F14(-1PH!
1+(-1y (—1)
=Ty =
that is transformable to the generalization of (10) by substituting K — K, = “-% and truncating to O(Q" + K'):
-1
Co+ Zﬂp % O + (1 - ) O%;,) + D 1, VP [0 Veos (Kg) + (1 = o) Viin(Kg) | (K = K)” = 0. (17)
K-Kg=22 PN
Equating each of the terms in (17) to zero leads to the generalization of (11):
Co + COS Qg + € - Veos(Kq) =0, =0, (18a)
VP % Vo
ocp<coqu ¢V *vms €V + Veos(Ky) +(1—op) <sian+”*y7‘;S‘"(Kq)> =0, p=1,...,N-1, (18b)
€V [0 Veos (Kg) + ( —0p)Vsin(Kg)] =0, p=N,....I-1, NSI<M+1. (18¢)

The usage of Eqs. (11) and (18) can now be summarized as follows. Given the (3,2M + 1) stencil size, we have a total of M + 1
degrees of freedom in the form of the coefficients ¢,,,m = 0,...,M. The M + 1 corresponding equations can be partitioned
into T groups, each one corresponding to a point (24,Kq),q =1,...,T on the linear dispersion curve such that

XT:IQ:M+1. (19)

=1
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Recall that at (24,Kq) = (0,0),N,I must be even. Then, in (19) replace I; by I,/2.

At each one of these points, the GDE is made to fit the linear curve to a prescribed SOoA; = (Ng,I;) by invoking one or
more of the equations of the system (11) or (18). (11a) is always used to ensure that the GDE intersects with the linear curve
at (Qq,Ky). This ensures a minimal SOoA of (1,1) at (24,Ky) > (0,0) and (2,2) at (£,4,K,) = (0,0). This employs T out of the
total M + 1 equations. The rest of the equations are in the form of (18b) and (18c), and are used to match derivatives of sev-
eral orders. This can be done in two ways: (a) usage of equations of the type (18c), that serves to increase the parameter I, at
that point and (b) use of (18c), that increases both I; and N, concurrently, being the equivalent of “derivative swapping”
technique. One is thus faced with tradeoffs between taking higher order SO0A at a given point vs. lower orders at multiple
points across the frequency range. The highest possible value of the SO0A is attained when all equations except the initial T
equations are assigned to a single point. If this point is not the origin, then this maximal value is I,x = M + 2 — T. If the point
is the origin, then I, =2(M +2 —T).

If intersection with the point (0,0) is included with a matching of the first derivative, i.e. SO0A at (0,0) > (4,4), then the
conventional OoA is defined. In this case, the remaining degrees of freedom are utilized for increasing the SOo0A at other fre-
quencies. This increase is equivalent to an independent specification of dispersion error reduction, as is done, for example, in the
context of the non-standard FDTD schemes. The concept of the SO0A is thus seen as encompassing all schemes by consol-
idating the notions of orders of accuracy and dispersion errors reduction.

2.4. Stability analysis

For stability analysis of these schemes, define the generalized amplification polynomial (GAP) in accordance with Von Neu-
mann analysis, as the outcome of Eq. (3), upon substituting E;' = &' (Ax)T"(At) with (¢, 1) = (e, g):

M
g +2<Zcm cos m1<>g+1 =0. (20)
m=0

For the scheme to be stable, the necessary requirement is that the roots of (20) obey |g,,| < 1. This implies the
condition

M 2
(Zcm cosm1<> <1 VK (21)

m=0

that in turn imposes constraints on the coefficients c,. To find these constraints, one first evaluates the extrema of the left
hand side of (21) over K. The non-trivial factor in the derivative expression is

M
mcy, sinmK = 0. (22)

m=1

Substituting the solutions of (22) into (21), one obtains constraints on ¢, that translate in turn to criteria for y
and other parameters of the scheme (see definition of Q; below). Note that K = 0,7 is always a solution. The stability
criterion needs to be considered concurrently with the equations relating these coefficients obtained from SOoA
considerations.

3. One-dimensional case studies

The cases below demonstrate the construction of FDTD schemes according to requirements derived from the spectrum of
the excitation. Customarily, different discretization schemes are characterized by the conventional order of accuracy (OoA).
For the sake of comparison between schemes, we utilize the concept of size-order (S-O) of an FDTD scheme defined by the 4-
number [alpha;, o; B, B,] to account for (o, ozy) stencils sizes and (8,, 8,) O0A: S-O =[ p,.p, :d;. 4], e.g. the scheme in (28)

— =

Stencil Size  OoA
below is of S-0 [3,3; 2,2]. The (S-0) is used alongside with the SO0A in the examples listed below. In cases where the origin
of the dispersion curve is not one of the T points on the curve, the OoA, and hence the S-O of the scheme are not defined. In
cases such as these, the comparison is done solely with respect to the stencil size. The examples are listed by ascending sten-
cil size, i.e. (3,3), (3,5) and (3,7). Egs. (3), (5) and (22) for the generic difference equation, the corresponding GDE and the
stability condition, respectively, are specialized for each stencil size. The cases are ordered by the number of specified fre-
quencies T, as defined after (18), and further detailed by all possible SO0As, specializing (11) whenever (24,K,) = (0,0) or
(18) for other frequency points. Stability analysis is carried out analytically for the simpler cases where the cs are functions
of 7y only. The rest of the cases, where the cs are functions of y and one or more s, are analyzed via what we denote as
“stability maps”. These maps are drawn based on the stability inequalities and present possible €;s vs. y which produce
schemes satisfying stability criteria.
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3.1. (3,3) Stencil

8963

For this stencil size, 2M + 1 = 3, i.e. M = 1. Therefore, one can select up to two frequency points (see explanation around
(19)),i.e. T < 2. The maximal SO0A is (4,4) and (2,2) for (Q,K) = (0,0) and (Q,K) > (0,0), respectively. These parameters are

summarized in Tables 1 and 2.

Egs. (3) and (5) for the generic difference equation and corresponding GDE now take the form of (23a) and (23b),

respectively:
EHE 4 200E] + 01 (B +ELy) =0,
cosQ +co+cycosK =0.

Stability analysis:
Solving (22), now in the form of

¢ sinkK =0,
we have
K=0,7
as the only solutions. Substituting this result into (21), we have
lco+al <1,
[co—ci| < 1.

Criteria for y and @ are deduced below.

311.T=1
(a) (21,K1) = (0,0),SO0A; = (4,4). Eq. (11) include here the orders p = 0, 1:
1+co+c¢ = 0,
= 7'))2.

Using these coefficients in (23a) we reconstruct the familiar S-O [3,3; 2,2] scheme
EX B 420 - DE — (Bl +EL) =0,

i+1

that is second order accurate in time and space.
For stability criterion, merge (28) into (27a). Then (26a) is satisfied automatically, and (26b) becomes

M+26]<1 = -1>2¢<0 =792<1

which is the familiar Courant-Friedrich-Lewy criterion.
(b) (£21,K1) > (0,0),S00A; = (2,2). Eq. (11) are now

COS Qq +Cog + €1 cos% =0,

ysin Q4
sin

1=

Table 1
(3,3) Stencil parameters.

(23a)
(23b)

(24)

(25)

(26a)
(26b)

(27a)
(27b)

(28)

(29)

(30a)

(30b)

M| T
(0,0) | (24, Kq)

Table 2
(3,5) Stencil parameters.

M| T
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This choice of coefficient creates a scheme where the dispersion curve fits the linear curve at the prescribed frequency point
(21, K7) up to the first derivative at that point. However, the curve does not intersect with the origin, therefore conventional
0o0A is not defined for this scheme.

For a stability criterion, the scheme is inherently unstable, since it can be shown that for the (3,3) stencil, instability is
mandatory if the point (0,0) is not included in the GDE curve.

312.T=2
(a) (21,K1) = (0,0), (22,K3) > (0,0),SO0A; = (2,2),S00A, = (1,1). In this case, Eq. (11) are
T1+co+c =0, (31a)
CoS 2y +Co + ¢4 cos%:o, (31b)

23
C0S=2 — COoS €2 1—-cosQ
EM B 2 n_ 2

i (El., +E.,) =0. (32)

1—cos% 1—cos%
In the scheme (32), the requirement of SO0A; = (1,1) at (©2,,K>) is seen as equivalent to requiring Vp| ., r,, = % =7.
The numerical group velocity, however, is not equal to the linear one due to the lack of degrees of freedom. The
scheme of (32) coincides with the well-known non-standard FDTD (NSFDTD) scheme [14-18]. For a stability criterion,

use (26) with (32). Then, (26a) is satisfied automatically, and (26b) becomes

MT+2¢]<1 = -1<¢<0, (33)
i.e.
cos 2, > cos% (34)

such that y < 1 as long as 2, < y7.
(b) (22,K3) > (24,K1) > (0,0),SO0A; = SO0A; = (1, 1). For this case,

Ccos 2y +Co + ¢4 cos% =0, (35a)
[0}
CcoS 2y +Co + ¢4 cos7 =0. (35b)

This choice of two frequencies with the minimal SOo0A is equivalent to requiring that the GDE curve intersects the linear
curve at the two frequencies without equating the derivatives at these points, i.e. Vphase|(912',<l_z) = % =7, while the same
does not apply to the group velocity. However, similarly to the case of (30), a Von Neumann analysis of this scheme shows
that it is unstable.

3.2. (3,5) Stencils

The (3,5) stencil provides additional degrees of freedom compared with the (3,3) case, as shown in Table 1. For example,
Vpnase can be specified at more than one frequency, or the group velocity V, could be specified by raising the SO0A at any
point to the level of (3,3) ((6,6) at the origin).

For the (3,5) stencil, M = 2 and the generic scheme of (3) and the corresponding GDE (5) become, respectively,

EFY B 200} + 1 (B + B + (Bl + EF) =0, (362)
cosQ+cg+cycosK+cycos2K =0 (36b)

or, representing (36b) explicitly,

2
_ -G C1 -G+ cos Q
K = cos (—462 + \/ < 4—c2> — ) . (37)

Table 3
(3,7) Stencil parameters.

M| T
(070> (Q(Z$Kl])

3| <4 <8| <4
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Stability analysis:
Eq. (22) now becomes

sinK(cy +4c;c0sK)=0=K=0,7 and c¢;+4c,cosK=0. (38)
Assuming that the equation c; + 4c; cos K = 0 has no real K as a solution, i.e.

4% >1 (39)
one is left with the two extreme points at K = 0, 7. Substituting this result into (21), we have

[co+ €1+ C2| <1, (40a)

| —Co+c1—ca] <1, (40Db)

from which criteria for y and Q, can be obtained. In the examples below, these criteria are shown alongside with the solu-
tions for the c,s. For cases with T = 1 and Q; = 0,K; = 0, where Oo0A is defined, the stability criterion depends solely on 7. In
other cases, the criterion will depend on ©, as well as on ). For each of these cases, areas of stability are shown graphically as
shaded areas on a two-dimensional map, with y and @, serving as the horizontal and vertical axes, respectively.

3.2.1. Case studies

Four different schemes pertaining to T = 1, are described in this section. The remaining cases are presented in Appendix A
along with stability analyses for these cases.

T = 1: The cases (©1,K;) = (0,0):

(a) SO0A; = (4,6) (b) SO0A; = (6,6)

Eq. (11) becomes, for the respective SO0As,

1 1 1 Co -1 -1
01> 22| |al=[-2|:]
4 o ' / . (41)
0o 1* 2 C 0 -y
———
(a) (b)
such that the differencing scheme of case (a) takes the form
E:'H] - 2E:l + E?q _ 2 — %Eln + %1 (E?+l + E?—l) - % (E?+2 + E?—Z) —-0. (42)
At? Ax?
Eq. (42) coincides with the standard S-O [3,5; 2,4] scheme.
For a stability criterion, use (40) with (41). Then, (40a) is satisfied automatically, and
1+2¢|<1 = -1<6<0 (43)
hence the well known result
—1<—fy2<0 = yg“—? (44)
3 2
The resultant discretization scheme for case (b) is
2—4 n n n— 24 n —92 (pn n y2— n n
2E; +ET 4+ E _e LA +5E (B, +E ) + 55 (B, +E) —o. (45)

At2 Ax2

The temporal OoA has been raised to 4, i.e. this scheme is of S-O [3,5; 4,4], effectively using the principle of derivative swap-
ping technique [5]. Note that the gain in OoA can come at the expense of reducing the grid cutoff frequency.
For stability, use (40) with (41). Then, (40a) is satisfied automatically, and

1T+2¢|<1 = -1<¢<0 (46)
or
4 y?
3
as may be expected with a higher order method.
The following schemes are listed for completeness only (see Fig. 1).

T = 1: The cases (€4,K;) > (0,0):
(c) SOoA; = (2,3) (d) SO0A; = (3,3)

“1<- ?2<0 = y<1 (47)

T Note that the temporal order of the difference equation remains 2, having used three consecutive temporal samples in the scheme.
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x107°

0.5 0.6

Fig. 1. Dispersion curves of Ky/Q — 1 for some of the (3,7) stencil schemes. T = 1 (Section 3.3.1): solid (black) line with squares: (a); solid (red) line with
diamonds: (b); solid (blue) line with circles: (c). T = 2 (Section B.1): dashed-dotted (magenta) line: (c); dashed (green) line: (g); solid (blue) line: (j). T =3
(Section B.2): solid cyan with filled circles: (b). T = 4 (Section B.3): Thin dotted (red) line (a). The vertical scale is blown up to show the differences between
the schemes. These differences, although seemingly small, have a large impact on long term errors. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Eq. (18) becomes, for the respective SO0As,

1 cosK; cos2K; 1 1 1 Co Cos -1 -1

0 sinKy sin2K; |« 0 1 2 |-|Jc|=]sin@ |=|-=y ;] =y |, 48

0 cosK; cos2K; 0 12 2? o cos 0 —y2 (48)
—— ——

(©) (d)

where the symbol * denotes the matrix Hadamard product (see definition for the vector Hadamard product in conjunction
with (13)). To date, schemes with (2;,K;) > (0,0) do not have documented counterparts. These two cases have stable re-
gions in the Q; — 7 plane, as shown in Fig. 2(a) and (b), respectively.

For the cases 2 < T < 3 see Appendix A.

3.3. (3,7) Stencils

The available degrees of freedom for this stencil are summarized in Table 3. Here, the generic scheme of (3) and the
corresponding GDE become, respectively,

EY 4 Bl 200E] + €1 (B + ELy) + o (Efy + EL,) +c3(EL5 +El5) =0, (49a)
Ccos Q2+ cg + ¢ cosK + ¢ cos 2K + c3 cos 3K = 0. (49b)

01 02 03 04 05 06 07 08 09

01 02 03 04 05 06 07 08 09
Y
Y

Fig. 2. Stability maps, showing areas of possible stable schemes for Section 3.2.1 ((3,5) stencil, T=1). (a) Case (c) (SO0A = (2,3)), (b) case (d)
(SO0A = (3,3)), where ©; > 0is in the range (0.1, ) and 0.1 < y < 1. Shaded (brown) areas are the islands of stability. The relevant region below cutoff is
seen below the solid (red) line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(b)

(d)

(e)

01 02 03 04 05 06 07 08 09

Fig. 3. Stability maps, showing areas of possible stable schemes. Section A.1 (3,5) stencil, T = 2: (a) Case (b) (SO0A; = (4,4),S00A; = (1,1),Q, = 0), (b) case
(d) (SO0A; = (2,2),S00A; = (2,2),2; = 0), (c) case (f') (SO0A; = (2,2),S00A; = (1,1),2; = 0.1). Section A.2 (3,5) stencil, T = 3,2, =0,Q; = 1: (d) case (a)
(SO0A; = (2,2),S00A; = SO0A; = (1,1)), (e) case (b) (SO0A; = SO0A; = SO0A; = (1,1));0.1 < y < 1. Shaded (brown) areas are the islands of stability. The
relevant region below cutoff is seen below the solid (red) line. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

For an explicit representation, rewrite (49b) as

cos3K+2CTzcoszlﬂ—cl_?’c3 cosk 0880 (50)
3

4c; 4c
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and define
X=cosK, o=, g =G 30, 52160
= , 17263, 2 = ic, 3= ic,
to obtain
X3+ o X? + o X + 03 = 0. 1
Define also

— o? _ _ 23 /
Q:30(29 d17 R:9(X1OCZ 2;710(3 20(17 - 3 R+ /Q3+R27 T_ 3 R_ Q3+R2

arriving at the following explicit representation of (49b):

K = cos™! <S+T—%rx1>. (52)
Stability analysis:
Invoking (22),

¢ SinK + 2c, sin 2K + 3¢c3sin3K =0 (53)

the outcome is
K=0,7 and 12c3cos*K +4c,cosK +¢; —3¢3 = 0. (54)

Assume now that the equation 12¢3 cos? K + 4c¢; cosK + ¢; — 3¢ = 0 has no real K as a solution. Then,

_o 4 (2 ? a3
3c3 3c3 3c3

12¢3c08? K +4c, cosK +¢; —3c3 =0 = cosKq, = 5 . (55)
K will not be a real if either condition in (56a) is met:
|cosKia| > 1, (56a)
2
C C1 — 3C3
<3—C3> T <0 (56b)

then we are left with the two extrema points K = 0, t. We need to impose |b| < 1 and substituting these points in to b we
arrive at the two inequalities:

[Co+C1+C+c3] <1, (57a)
|—co+c1—C+c3 <1 (57b)

3.3.1. Case studies

The (3,7) stencil provides a foundation for many schemes, see representative dispersion curves in Fig. 1, out of which six
different schemes pertaining to T = 1, are described herein. Twenty four more examples are given in Appendix B along with a
stability summary in Table B.1. Fourteen out of the thirty schemes where found to have stability regions.

T = 1: The cases (24,K;) = (0,0):

(a) SO0A; = (4,8) (b) SO0A; = (6,8) (c) SO0A; = (8,8)

Eq. (11) becomes, for the respective SO0As,

11 1 1 Co -1 -1 -1
0 12 2% 3? al | =22
o 1* 2* 3¢ ol o |-l (58)
0 1% 26 3¢ C3 0 0 —y6
N N — N——
(a) (b) ()

The solutions, defined as ¢V8 = (cg"'s) M8 V8 cgN‘s));N —4,6,8, are

c8 -1 000 ” 0 0 2 -3 3 -%
— 48 " 7 13 1 1
c68) | = c4® +10 » 0 ~“i§ 14 & 7 | (59)
8.8 6.8 6 1 1 1 1
c®® c®® 0 0 vy % ~2 8 360

These coefficients produce S-0O [3,7; 2,6], [3,7; 4,6] and [3,7; 6,6] schemes, respectively.
T = 1: The cases (24,K;) > (0,0):
(d) SO0A; = (2,4) (e) SO0A; = (3,4) () SOoA; = (4,4)
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Eq. (18) becomes, for the respective SO0As,

1 cosK; cos2K; cos3K; 1 1 1 1 Co cos -1 -1 -1
0 sinK; sin2K; sin3K; 01 2 3 C sin @, vl -v || -
0 cosK; cos2K; cos3K; | |0 12 22 32| || |cosa || 0 P =2 'l 2| (60)
0 sinkK; sin2K; sin3K; o 1* 2° 3 P sin Q; 0 0 —y3

Since (24,K;) > (0,0), the S-O is not defined for this case.
For the cases 2 < T < 4 refer to Appendix B.

4. One-dimensional example

The example below pertains to the (3,5) stencil case (Section 3.2). We choose y = 0.8 and use a modulated pulse of the
form

08 [
P(n) = {cos(Qmodn) sin® (Z&), 0<n<200, 61)

0, elsewhere,

whose spectrum is centered around Q,,,,¢ = 0.4 as shown in Fig. 4. The pulse is shown vs. position at 250,000 and one million
time steps in Figs. 5(a) and (b), respectively. The scheme with T = 2,Q; =0, Q, = 0.4,S00A;, = (2,2) (Section A.1, case (d))
is compared with the analytical solution and with the standard S-O [3,5; 4,4] scheme where T = 1,Q; = 0,S00A; = (6,6)
(Section 3.2.1, case (b)). Both schemes, based on the same stencil size, require the same number of algebraic manipulations.
The severe effect of the numerical dispersion in the standard scheme is clearly visible, while the improved scheme virtually
reproduces the analytical solution at 250,000 time steps and still tracks the center of the analytical solution at a million time
steps. The higher accuracy has thus been achieved without an extra computational cost since it is designed for the given
pulse spectrum only.

5. The SOoA-based methodology in two-dimensional schemes
5.1. The GDE and the SO0A in two dimensions

The SOoA-based methodology, as introduced in Section 2, is comprised of the following basic steps, that apply equally
well to the two-dimensional case described next: (a) formulation of a generic difference equation, given a stencil structure,
with undetermined degrees of freedom, (b) transformation of this equation into the spectral domain to form the GDE, and (c)
expansion of the GDE into a Taylor series about an arbitrary number of frequency points where the GDE fits the linear dis-
persion relationship to a specified spectral order of accuracy (SOoA). In applying these steps to the two-dimensional case,
features such as anisotropy and the additional complexity of the two- dimensional grid are taken into account.

The two-dimensional GDE can be formulated either in the Cartesian (2, Ky, K,) or polar (£,K, ¢) spectral coordinates,
interrelated by

Ky = keAx = kAx cos ¢ = K cos ¢, (62a)
K, = k,Ay = kAy sin ¢ = rK sin ¢ (62b)

0 T T T T T
10 F / 4
20| -

30 | .

40 k 4
50 F 4

60 | .

Normalized spectrum (dB)

70 F -

80 L L L s H
0 0.1 0.2 03 0.4 05 0.8 0.7 0.8

Q

Fig. 4. Spectrum of the exciting pulse (61) vs. frequency of an FDTD grid. Central, lower and upper frequencies are defined as 2 =0.4,0.3 and 0.5,
respectively.
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(3)1 . . —

Pulse amplitude, 250000 time steps

-1 . . .
1.996 1.997 1.998 1.999 2
Spatial coordinate, i x 10°
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05

! ||”|III|.H“
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il ) ity
DR

Pulse amplitude, 1,000,000 time step:
o

-1 s s s s s

7.99 7.992 7.994 7.996 7.998 8
Spatial coordinate, i x 10

Fig. 5. Snapshot of the pulse of (61) vs. position at (a) 250,000 and (b) one million time steps. Dashed-dotted (red) line: analytical solution; dashed (green)
line: T =1,Q; = 0,S00A; = (6,6) (Section 3.2.1, case (b)); solid (blue) line: result of scheme with T =2,Q; =0, Q, = 0.4,S00A;, = (2,2) (Section A.1, case
(d)). y = 0.8. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

with r £ & The two-dimensional linear dispersion relation, being the analog of (6), can be written in the Cartesian and polar
options, respectively, as

- @+ (B + 93K ) = 0, (63a)
— P+ =0, (63b)
where 7, , = cAﬁ—iv. Eq. (63b) is an outcome of (63a) using r = %.

The spectral constituent (K, K,) propagates within the i,j grid along the 0 direction, while in the physical iAx,jAy space,
the propagation is along ¢, where
K
—Y — tan0 = rtan ¢. (64)
Ky
The two-dimensional SOo0A is defined in an analogous manner to the one-dimensional SO0A of Section 2. The point about
which the GDE is expanded can be defined either in the Cartesian or polar coordinate system, leading to corresponding def-
initions of the SOoA. For the Cartesian form we denote SO0A; = (Ny, I, Iyq) and Pq = (Qq4,Kyq, Kyq), residing on the linear dis-
persion relation surface (63a). In the polar case, SO0A,; = (Ng,Iq,14q). and Pyq = (24,K, ¢4), residing on (63b).

5.2. Classification of two-dimensional stencils

Unlike the one-dimensional case, the size portion of the size-order (S-O) concept (see Section 3) in the two-dimensional
case should be specified in terms of the stencil structure in the (x,y) plane rather than just by its total number of points.
Define a local (x' = +i'Ax,y’ = +j'Ay) coordinate system centered about the point (i,j), i.e. x = (i+1)Ax,y = (j £j)Ay (see
Fig. 6). Derivatives are to be approximated as a weighted summation of the points within the stencil centered about (i,j).
In the sequel, we focus on stencils with symmetrical properties only.
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Fig. 6. 2-D Stencil map.

Examining the stencil map in Fig. 6, one can define groups of stencil structures as follows. The first group is comprised of
points residing symmetrically on the local coordinate system axes, shown in solid discs in Fig. 6. These stencils have 2M + 1
points, M = 1,2, .... The number of points over both axes is chosen here to be the same. For this group, the stencil size is
denoted as (3,2M + 1,0,0) (the temporal stencil size is always 3, and the extra two zeros serve as placeholders for now).
The total number of spatial points in the stencil becomes 4M + 1.

The second group incorporates the points of the first group plus points that reside on the two principal diagonals, shown
as red discs with solid boundary in Fig. 6. The stencil size for members of this group is denoted (3,2M + 1, D4, 0), where the
parameter D, is the number of sets of points, each set having four points complying with i’ =j = 1,...,D,. This adds 4D,
points to the total number of points in the first group, rendering the total number of point equal to 4(M + Dy4) + 1.

Points lying on secondary diagonals, when added to the points of the second group, form the third group. The size of this
group is now denoted (3,2M + 1, D4, Dg). The additional parameter for this group, Ds, counts for the number of sets with 8
points each. In Fig. 6, these sets are encircled and marked with numbers 1-3. Dg = M means the incorporation of groups #1
through #M;. Each set is characterized by i” +j? = const. For this group, the total number of stencil points is
4(M + D4 + 2Ds) + 1.

Fig. 7(a)-(f) depict, respectively, the examples with stencil sizes of: (a) (3,3,0,0),i.e. M =1, D4 =0, Dg =0, (b) (3,5,0,0),
i.e. M=2,Ds=0,D3 =0, (c) (3,3,1,0), i.e. M=1,D4 =1,Dg =0, (d) (3,7,0,0), i.e. M =3,D, =0,D3 =0, (e) (3,5,1,1), i.e.
M=2,Ds=1,Dg =1 and (f) (3,5,2,1).

5.3. (3,3,0,0) Stencils with Ay # Ax

The generic scheme for the (3,3,0,0) stencils is:

BBl o 260 4+ 65 (BLyy + ELyy ) + ¢ (B + Efjy ) =0, (65)
where x = iAx,y = jAy and t = nAt. The corresponding Cartesian GDE is
€0S Q + ¢o + ¢} cosKy + ¢} cos Ky, = 0. (66)

In order to fit the GDE surface to the linear dispersion surface up to a specified order, we expand (66) about a point
Py = (24,Kxq,Kyq) # (0,0,0) residing on the linear surface (63a) (see the 1-D analog in 